Removal of spike frequency adaptation via neuromodulation intrinsic to the Tritonia escape swim central pattern generator.
نویسندگان
چکیده
For the mollusc Tritonia diomedea to generate its escape swim motor pattern, interneuron C2, a crucial member of the central pattern generator (CPG) for this rhythmic behavior, must fire repetitive bursts of action potentials. Yet, before swimming, repeated depolarizing current pulses injected into C2 at periods similar those in the swim motor program are incapable of mimicking the firing rate attained by C2 on each cycle of a swim motor program. This resting level of C2 inexcitability is attributable to its own inherent spike frequency adaptation (SFA). Clearly, this property must be altered for the swim behavior to occur. The pathway for initiation of the swimming behavior involves activation of the serotonergic dorsal swim interneurons (DSIs), which are also intrinsic members of the swim CPG. Physiologically appropriate DSI stimulation transiently decreases C2 SFA, allowing C2 to fire at higher rates even when repeatedly depolarized at short intervals. The increased C2 excitability caused by DSI stimulation is mimicked and occluded by serotonin application. Furthermore, the change in excitability is not caused by the depolarization associated with DSI stimulation or serotonin application but is correlated with a decrease in C2 spike afterhyperpolarization. This suggests that the DSIs use serotonin to evoke a neuromodulatory action on a conductance in C2 that regulates its firing rate. This modulatory action of one CPG neuron on another is likely to play a role in configuring the swim circuit into its rhythmic pattern-generating mode and maintaining it in that state.
منابع مشابه
Spike timing-dependent serotonergic neuromodulation of synaptic strength intrinsic to a central pattern generator circuit.
Neuromodulation is often thought to have a static, gain-setting function in neural circuits. Here we report a counter example: the neuromodulatory effect of a serotonergic neuron is dependent on the interval between its spikes and those of the neuron being modulated. The serotonergic dorsal swim interneurons (DSIs) are members of the escape swim central pattern generator (CPG) in the mollusk Tr...
متن کاملThe Cycle Period of a Network Oscillator is Independent of Membrane Potential and Spiking Activity in Individual Central Pattern Generator Neurons
Rhythmic motor patterns are thought to arise through the cellular properties and synaptic interactions of neurons in central pattern generator (CPG) circuits. Yet, when examining the CPG underlying the rhythmic escape response of the opisthobranch mollusc, Tritonia diomedea, we found that the cycle period of the fictive swim motor pattern recorded from the isolated nervous system was not altere...
متن کاملA Comparative Analysis of the Neural Basis for Dorsal-Ventral Swimming in the Nudipleura
Despite having similar brains, related species can display divergent behaviors. Investigating the neural basis of such behavioral divergence can elucidate the neural mechanisms that allow behavioral change and identify neural mechanisms that influence the evolution of behavior. Fewer than three percent of Nudipleura (Mollusca, Opisthobranchia, Gastropoda) species have been documented to swim. H...
متن کاملParameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia.
This research examines the mechanisms that initiate rhythmic activity in the episodic central pattern generator (CPG) underlying escape swimming in the gastropod mollusk Tritonia diomedea. Activation of the network is triggered by extrinsic excitatory input but also accompanied by intrinsic neuromodulation and the recruitment of additional excitation into the circuit. To examine how these facto...
متن کاملCycle period of a network oscillator is independent of membrane potential and spiking activity in individual central pattern generator neurons.
Rhythmic motor patterns are thought to arise through the cellular properties and synaptic interactions of neurons in central pattern generator (CPG) circuits. Yet, when examining the CPG underlying the rhythmic escape response of the opisthobranch mollusc, Tritonia diomedea, we found that the cycle period of the fictive swim motor pattern recorded from the isolated nervous system was not altere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 20 شماره
صفحات -
تاریخ انتشار 1997